PGC-1α functions as a co-suppressor of XBP1s to regulate glucose metabolism

نویسندگان

  • Jaemin Lee
  • Mario Andrés Salazar Hernández
  • Thomas Auen
  • Patrick Mucka
  • Justin Lee
  • Umut Ozcan
چکیده

OBJECTIVE Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) promotes hepatic gluconeogenesis by activating HNF4α and FoxO1. PGC-1α expression in the liver is highly elevated in obese and diabetic conditions, leading to increased hepatic glucose production. We previously showed that the spliced form of X-box binding protein 1 (XBP1s) suppresses FoxO1 activity and hepatic gluconeogenesis. The shared role of PGC-1α and XBP1s in regulating FoxO1 activity and gluconeogenesis led us to investigate the probable interaction between PGC-1α and XBP1s and its role in glucose metabolism. METHODS We investigated the biochemical interaction between PGC-1α and XBP1s and examined the role of their interaction in glucose homeostasis using animal models. RESULTS We show that PGC-1α interacts with XBP1s, which plays an anti-gluconeogenic role in the liver by suppressing FoxO1 activity. The physical interaction between PGC-1α and XBP1s leads to suppression of XBP1s activity rather than its activation. Upregulating PGC-1α expression in the liver of lean mice lessens XBP1s protein levels, and reducing PGC-1α levels in obese and diabetic mouse liver restores XBP1s protein induction. CONCLUSIONS Our findings reveal a novel function of PGC-1α as a suppressor of XBP1s function, suggesting that hepatic PGC-1α promotes gluconeogenesis through multiple pathways as a co-activator for HNF4α and FoxO1 and also as a suppressor for anti-gluconeogenic transcription factor XBP1s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE EFFECT OF 8 WEEKS AEROBIC TRAINING ON CARDIAC PGC-1Α AND PLASMA IRISIN IN STZ-INDUCED DIABETICS’ RATS

Background: Cardiomyopathy is one of adverse effects of diabetes that associated with cardiac muscle metabolism and function disruption. Exercise training decreases adverse effects of diabetes on heart by changing genes involved in cardiac metabolism and increasing myokines secretion. So, the aim of this study was to investigate of 8 weeks aerobic training on cardiac PGC-1α gene expression and ...

متن کامل

PGC-1 coactivators in β-cells regulate lipid metabolism and are essential for insulin secretion coupled to fatty acids.

OBJECTIVES Peroxisome proliferator-activated receptor γ coactivator 1 (PPARGCA1, PGC-1) transcriptional coactivators control gene programs important for nutrient metabolism. Islets of type 2 diabetic subjects have reduced PGC-1α expression and this is associated with decreased insulin secretion, yet little is known about why this occurs or what role it plays in the development of diabetes. Our ...

متن کامل

PGC-1α expression in murine AgRP neurons regulates food intake and energy balance

OBJECTIVE Food intake and whole-body energy homeostasis are controlled by agouti-related protein (AgRP) and pro-opiomelanocortin (POMC) neurons located in the arcuate nucleus of the hypothalamus. Key energy sensors, such as the AMP-activated protein kinase (AMPK) or sirtuin 1 (SIRT1), are essential in AgRP and POMC cells to ensure proper energy balance. In peripheral tissues, the transcriptiona...

متن کامل

The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch

Hepatic gluconeogenesis during fasting results from gluconeogenic gene activation via the glucagon-cAMP-protein kinase A (PKA) pathway, a process whose dysregulation underlies fasting hyperglycemia in diabetes. Such transcriptional activation requires epigenetic changes at promoters by mechanisms that have remained unclear. Here we show that GCN5 functions both as a histone acetyltransferase (H...

متن کامل

Transcriptional coactivator NT‐PGC‐1α promotes gluconeogenic gene expression and enhances hepatic gluconeogenesis

The transcriptional coactivator PGC-1α plays a central role in hepatic gluconeogenesis. We previously reported that alternative splicing of the PGC-1α gene produces an additional transcript encoding the truncated protein NT-PGC-1α NT-PGC-1α is co-expressed with PGC-1α and highly induced by fasting in the liver. NT-PGC-1α regulates tissue-specific metabolism, but its role in the liver has not be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2018